In this interactive piece, visitors can zoom into the structures on the surface of a nasturtium leaf. Electron micrographs reveal the nanoscale structures that make water bead on the surface of the leaf. Zoom Into a Nasturtium Leaf can be...
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy...
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy...
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy...
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy...
The Lotus Effect describes water droplets rolling off leaf surfaces, removing dirt and contaminants in the process. This phenomenon can also be seen in the more common nasturtium. Scanning electron microscope images show that nasturtium leaves are covered by waxy...
This formative evaluation was conducted to see how the addition of an interactive media piece enhanced visitors' understanding of Nasturtium, a life sciences exhibit that demonstrates the water repelling properties of nasturtium leaves. The media piece allows the visitor to...